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Abstract
By means of the nonequilibrium Green function and equation of motion method,
the electronic transport is theoretically studied through a parallel-coupled
double quantum dot (DQD) in the presence of on-dot Coulomb interaction U .
With focus on the quantum interference in the U -dominant parallel-coupled
DQD, we find two types of Fano interferences in the conductance spectra. If
the one-particle DQD bonding and antibonding bands are well separated from
their Coulomb blockade counterparts, the main features of Fano interference in
usual DQD systems are recovered with minor revisions. The most interesting
is the hybridization between the antibonding state and the Coulomb counterpart
of the bonding state, which gives rises to two new channels for Fano resonance.
The Fano interference in the Coulomb hybridized systems can be controlled by
the electrostatic and magnetic approaches, and exhibits properties quite different
from what are reported in the noninteracting Fano–Anderson model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fano resonance stems from quantum interference between resonant and nonresonant
processes [1], and manifests itself in spectra as asymmetric line shape in a large variety of
experiments. It is known that the Fano effect is a good probe for the phase coherence for carriers
in solids, in particular in the quantum dot (QD) system [2–7]. Unlike the conventional Fano
resonance [8–11], the Fano effect in the QD system has its advantage in that its key parameters
can be readily tuned. The first observation of the Fano line shape in the transport properties
in the QD system was reported by Göres et al [3, 4] in single-electron-transistor experiments.
Recently, Kobayashi et al studied the magnetically and electrostatically tuned Fano effect in a
QD embedded in an Aharonov–Bohm (AB) ring [5, 6], and Johnson et al investigated a tunable
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Figure 1. Schematic setup of a tunnelling-coupled parallel DCI system coupled to two reservoirs.

Fano interferometer consisting of a QD coupled to a one-dimensional channel and observed the
Coulomb-modified Fano resonances [7].

Recent experimental advances in parallel-coupled double quantum dots (DQDs) [12–16],
in which two QDs coupled via barrier tunnelling tc are respectively embedded into opposite
arms of a AB ring and also coupled to two leads roughly equally (cf figure 1), have
inspired a number of theoretical attempts to study the coherent and correlated transport in
this system [17–27]. As a controllable two-level system, it is appealing for the parallel-
coupled DQD system to be a platform of investigating various quantum effects such as the
Fano interference, Kondo correlation, and antiferromagnetic impurity–spin correlation. The
parallel-coupled DQD system may become one of the promising candidates as the quantum
bit in quantum computation based on solid state devices [28]. The entangled quantum states
required for performing the quantum computation demand a high degree of phase coherence
in the system [29]. Being a probe of the phase coherence [30], the Fano effect in the parallel-
coupled DQD system is certainly of practical importance, especially if its swap effect can be
manipulated by tuning.

The theoretical investigations of the Fano effect in the parallel-coupled DQD system
can be roughly divided into two regimes, related to two sets of recent experiments,
respectively [12–16].

In one recent experiment, Chen et al [16] studied the competition between the Kondo
correlations and antiferromagnetic impurity–spin correlation. In this regime, the system can
be described by the slave-boson mean field technique with infinite U or finite U . The Kondo
assisted transport has been suppressed in the system due to interference between many-body
quantum states [22–25], which can be understood as a generalization of the usual one-particle
Fano effect.

The other set of experiments, by Holleitner et al, is not governed by the spin correlation
effect despite the on-site Coulomb repulsions [12–14]. The reason why the Kondo correlation
does not play an important role in these experiments is simply due to the fact that in these
experiments the spin exchange coupling between the dot and lead states is rather weak, leading
to a Kondo temperature much lower than the electron temperature. The inter-dot coupling
is also weak so that the antiferromagnetic impurity–spin correlation between the two dots is
smeared by the environment. In this regime, the Fano–Anderson model has been adopted in
previous works, in which the electron–electron repulsion is entirely ignored [17–21], though
its existence is a fact.

In this work, we intend to demonstrate that though all spin correlation is overwhelmed by
the electronic temperature in experiments by Holleitner et al, the quantum interference together
with the mean-field on-site interaction in the parallel coupled double Coulomb islands (DCIs)
will lead to some interesting phenomena. We shall start with a two-impurity Anderson model
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with the inter-dot tunnelling coupling tc to describe the parallel-coupled DCI system. Within
this model we shall show two types of Fano interference.

(1) If two dot levels are degenerate, the main features of the Fano interference between the
resonant and nonresonant channels reported in the previous no-U model are qualitatively
recovered for the Coulomb blockade counterparts, only minor revisions needed.

(2) In the presence of a finite level separation between two dots �ε, for a system with
proper inter-dot coupling and on-site U , the antibonding state may be hybridized with
the Coulomb blockade of the bonding state, forming two channels.

The quantum interference between these two hybridized channels gives rise to a new-type Fano
resonance. This type of Fano interference can be controlled by the level detuning and magnetic
flux. We estimate that to observe it requires that the quantum dots should be of radius about
2–6 nm. This may be feasible, particularly in such single-electron devices as single-molecule
transistors [31–34].

The paper is organized as follows. In section 2, after the model and formalism is
introduced, a discussion is given to justify the approximation we take compared to the
experimental data from [12]. Our main numerical results will be presented in section 3, in
which we also suggest the experimental candidate to probe the novel phenomena. Finally, the
validity of the approximation is again discussed and a brief summary is given.

2. Physical model and current formula

The model Hamiltonian (cf figure 1) is as follows:

H = HDQD + Hleads + HT. (1)

The parallel-coupled DCI system is described with the two-impurity Anderson model with an
inter-dot tunnelling-coupling term as

HDQD =
∑

i,σ

εiσ d†
iσ diσ +

∑

i

Ui d
†
i↑di↑d†

i↓di↓ − tc
∑

σ

(d†
1σ d2σ + h.c.), (2)

where d†
iσ (diσ ) represents the creation (annihilation) operator for the discrete state with the

energy εiσ and spin σ (σ = ↑,↓) in the dot i (i = 1, 2), which are coupled to each other via
tunnelling tc, and the on-dot Coulomb repulsion is described in the second term on the right
hand of equation (2)3.

The Hleads in equation (1) represents the noninteracting electron gas in the left (L) and right
(R) leads,

Hleads =
∑

k,α,σ

εkαc†
kασ ckασ , (3)

where c†
kασ (ckασ ) is the creation (annihilation) operator for a continuous state in the lead α

(α = L, R) with energy εkα and spin σ . The HT in equation (1) represents the tunnelling
coupling between the QD and lead electrons,

HT =
∑

k,α,σ,i

Vαi d
†
iσ ckασ + h.c., (4)

3 The previous mean-field results indicate that the inter-dot Coulomb interaction U ′ will shift the conductance peaks
significantly [38, 40, 35]. Considering that inter-dot U ′ is usually an order of magnitude smaller than the on-site
U for typical GaAs structures used in experiments and the addition of this term makes the current formalism more
complicated, it is not included in the present Hamiltonian. On the other hand, in the single-occupation regime of
the DQD induced by a strong interdot repulsion, the low-energy behaviour is characterized by an SU(4) Kondo effect,
which has already been described by the slave boson mean-field, numerical renormalization group or Bethe ansatz exact
solution [43–45]. Because of the fluctuation of the orbital degree of freedom (pseudospin), this effect is sensitive to the
magnetic flux threading the DQD AB ring. When a magnetic flux other than π breaks the conservation of pseudospin
quantum number, the SU(4) Kondo reduces to the common SU(2) Kondo with an enhanced Kondo temperature [44].
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where for the sake of simplicity the tunnelling matrix element Vαi is assumed to be independent
of k, and the phase shift due to the total magnetic flux threading into the AB ring, �, is
assumed to distribute evenly among four sections of the DQD AB ring. Namely, VL1 =
|VL1|ei φ

4 , V ∗
L2 = |VL2|ei φ

4 , V ∗
R1 = |VR1|ei φ

4 , and VR2 = |VR2|ei φ

4 , where φ = 2π�/�0, with
the flux quantum �0 = hc/e. In the following calculation, we define the line-width matrix
as 	α

i j ≡ ∑
k Vαi V ∗

α j 2πδ(ε − εkα) (α = L, R) and Γ = ΓL + ΓR. According to figure 1, the
line-width matrices read

ΓL/R =
(

	
L/R
1

√
	

L/R
1 	

L/R
2 e±i φ

2

√
	

L/R
1 	

L/R
2 e∓i φ

2 	
L/R
2

)
, (5)

where 	α
i is short for 	α

ii .
According to Meir and Wingreen [36], the general formula for current through a

mesoscopic region between two noninteracting leads is given by

J =
∑

σ

ie

2h

∫
dω Tr{(ΓL − ΓR)G<(ω)

+ [ fL(ω)ΓL − fR(ω)ΓR](Gr(ω) − Ga(ω))}, (6)

where fL (R)(ω) is the Fermi distribution function on the left (right) leads, Gr, Ga, and G< are
respectively the retarded, advanced, and lesser Green functions in the DQD region, defined as

Gr
iσ, jσ (t) ≡ 〈〈diσ (t)|d†

jσ 〉〉r ≡ −iθ(t)〈{diσ (t), d†
jσ }〉,

G<
iσ, jσ (t) ≡ 〈〈diσ (t)|d†

jσ 〉〉< ≡ i〈d†
jσ diσ (t)〉. (7)

Writing the equation of motion for the retarded Green function in Fourier space [37]
〈〈diσ |d†

jσ 〉〉r
ω , one arrives at

Gr(ω) = [1 − gr(ω)Σr]−1gr(ω), (8)

in the wide-band limit Σr = − i
2 (ΓL + ΓR), and gr(ω) is the Green function for the isolated

DCI. It is convenient to express the inverse of gr(ω) as [gr(ω)−1]i ī = tc (ī = 2 if i = 1, and
vice versa), and

[gr(ω)−1]ii = (ω − εiσ )(ω − εiσ − Ui)

ω − εiσ − Ui + Ui〈ni σ̄ 〉 + Ui tc[〈d†
i σ̄ dī σ̄ 〉 − 〈d†

ī σ̄
di σ̄ 〉]

ω − εiσ − Ui + Ui 〈ni σ̄ 〉 , (9)

where σ̄ = −σ , the expectation values of 〈nıσ̄ 〉 and 〈d†
i σ̄ dī σ̄ 〉 can be calculated self-consistently

by taking advantage of the definition of the lesser Green function

〈d†
i σ̄ dī σ̄ 〉 = −i

∫ ∞

−∞
dω

2π
G<

ī σ̄ ,i σ̄
(ω). (10)

During the deductions the following truncation rules are applied to the higher-order Green
functions:

〈〈dīσ ni σ̄ |d†
jσ 〉〉r

ω
∼= 〈ni σ̄ 〉〈〈dīσ |d†

jσ 〉〉r
ω,

〈〈diσ d†
i σ̄ dīσ̄ |d†

jσ 〉〉r
ω

∼= 〈d†
i σ̄ dī σ̄ 〉〈〈diσ |d†

jσ 〉〉r
ω,

〈〈ckασ ni σ̄ |d†
jσ 〉〉r

ω
∼= 〈ni σ̄ 〉〈〈ckασ |d†

jσ 〉〉r
ω,

〈〈d†
i σ̄ ckασ̄ diσ |d†

jσ 〉〉r
ω

∼= 〈d†
i σ̄ ckασ̄ 〉〈〈diσ |d†

jσ 〉〉r
ω.

(11)

By these truncations, all the inter-dot and dot–lead spin-flip correlations are ignored, and
the Kondo effect is certainly beyond our considerations. Hence the electrons of opposite
spin σ̄ can be treated as static entities which affect the effective site energy of the electrons
of spin σ through the on-site repulsion. Consequently, we have G< = GrΣ<Ga, where
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Σ< = i( fLΓL + fRΓR) [38]. In general Gr − Ga = Gr(Σr − Σa)Ga. Thus equation (6) of
current is reduced to a usual Landauer–Büttiker formula for the noninteracting electrons [36]

J =
∑

σ

e

h

∫
dω [ fL(ω) − fR(ω)] Tr[Ga(ω)ΓRGr(ω)ΓL], (12)

implying that by ignoring all spin-flip processes the effect of electrons with spin σ̄ on the
motion of the electron with spin σ behaves like a background, and the coherent tunnelling
process takes place between electrons with the same spin.

It must be noted that the current truncation rules work well only when the first-order direct
charge transfer is allowed [27, 38–40]. In the Coulomb blockade regime, Kondo physics is
expected to occur at temperatures lower than the Kondo temperature TK. In the experiments
by Holleitner et al, however, both dots are weakly coupled to the leads, leading to a Kondo
temperature lower than the bath temperature. As a result, it is reasonable to ignore the Kondo
effect as we do in the present work. Besides, when a large intra-dot Coulomb repulsion prevents
the electrons in dots from direct hopping, the low-energy effective interaction between them is
equivalent to the Heisenberg Hamiltonian J �S1· �S2, where J = 4tc2/U comes from the second-
order virtual excitations. With the parameters measured in experiments by Holleitner et al [12]
U = 3.36–3.42 meV, tc = 49.5–66 μeV, and T = (118 ± 8) μK or 9.46–10.84 μeV, we
estimate the antiferromagnetic exchange energy as J = 3–5 μeV, less than kBT/2, implying
that the spin singlet–triplet spectrum structure due to the inter-dot coupling is smeared out by
kBT broadening of the Fermi surfaces in the leads. In this context, it is safe to rule out the
inter-dot spin exchange process in analysing the experiments at kBT > 4t2

c /U . On the other
hand, to observe Fano resonances in the experiment of an AB ring with one dot embedded, the
temperature should be lower than around 400 mK [6]. Thus to investigate the Fano interference
in DCI taking no account of the the inter-dot spin correlation, the parameters are restricted to
	 > kBT > 4t2

c /U as in sections 3.1 and 3.2. Meanwhile, in section 3.3 a detuning between
two dot levels can overcome the on-site U barrier somewhat and the requirement 4t2

c /U < kBT
is relaxed in this case.

3. Numerical results

As pointed out in [17], in the parallel-coupled geometry, if 	L
1 = 	L

2 and 	R
1 = 	R

2 , the
antibonding state could be decoupled entirely from the leads. Our calculation verifies that
this property is retained when the on-dot Coulomb repulsion is included. In the following
we will only consider the following two configurations: (1) 	L

1 = 	R
2 > 	L

2 = 	R
1 , and

(2) 	L
1 = 	R

1 > 	L
2 = 	R

2 . It should be pointed out that the numerical results presented in this
section, though they are calculated at zero temperature, are valid only at temperature above the
Kondo temperature, as all the spin-flip processes have been neglected as mentioned above.

3.1. Spectra in dominant U

We are particularly interested in how the states in the DQD region are modified by the on-dot
Coulomb repulsion, and how this modification influences transport properties. For simplicity,
in this subsection we first estimate the eigenstate and eigenenergy of the isolated DQD system
under the condition of U  tc and �ε = 0.

If there is only one electron in the DQD system, due to the inter-dot coupling, the DQD
state is the linear combination of the states in two dots, thus-formed bonding and antibonding
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Figure 2. (a) The local density of states and (b) the total particle number in the DQD structure
for different magnetic phase parameters φ. A magnetic flux threading into the AB ring swaps
the effective couplings of the DQD states as well as their Coulomb counterparts to the leads. The
parameters taken are ε1σ = ε2σ = 0, U1 = U2 = 4, tc = 0.1, and kBT = 0.01. For configuration 1,
	L

1 = 	R
2 = 0.15, 	R

1 = 	L
2 = 0.05; and for configuration 2, 	L

1 = 	R
1 = 0.15, 	L

2 = 	R
2 = 0.05.

states are associated with energy at ε0 − tc and ε0 + tc, respectively. Hence, the one-electron
ground state of the DQD is the bonding state with eigenenergy ε0 − tc.4

When the DQD contains two electrons, six possible states in the system include |↑〉1|↑〉2,
|↓〉1|↓〉2, |↑〉1|↓〉2, |↓〉1|↑〉2, |↑↓〉1|0〉2, and |0〉1|↑↓〉2. The ground and excited two-electron
states are determined by directly diagonalizing the matrix of HDQD in the Hilbert space spanned
by these six states. Thus the two-electron ground state has energy at 2ε0+ 1

2 (U −√
U 2 + 16t2

c ),
which, if U  tc, reduces to 2ε0 − 4t2

c /U ∼ 2ε0. Since the intra-dot Coulomb interaction
produces effective charging energy on the bonding and antibonding states, it is expected for
the two-electron ground state that the electrons tend to distribute themselves evenly throughout
the DQD structure to avoid the charging energy. Since the extra charging energy has to be
consumed when adding the third or the fourth electron into the system, the ground state energy
is approximately equal to 3ε0 + U − tc and 4ε0 + 2U , respectively.

When an isolated DCI is connected to two leads, the coupling between a DCI level
and leads results in broadening of the discrete level and forming the band. The local
density of states (DOS), defined as the imaginary part of the retarded Green function ρσ =
− 1

π

∑
i=1,2 Im Gr

iσ,iσ , has then been calculated. The low-temperature transport properties that
we are interested in are mainly determined by the electrons around the Fermi level. In the
present case, the retarded Green function depends on the occupancy of electrons in dots, which
is ultimately decided by the Fermi level. Hence the calculated DOS spectrum at energy ω

shown in figure 2(a) is associated with the Fermi level taken also at ω.
The effective coupling between the DCI states and leads can be tuned by both the dot–lead

coupling strength and the total magnetic flux. Our calculation reveals that the line shape of
the local DOS critically depends on magnetic flux φ threading into the AB ring. As shown in

4 Throughout this paper the bonding and antibonding states are cited in the absence of the magnetic flux. As shown
in [21], the applied magnetic flux will change the order of the levels.
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Figure 3. The differential conductances for (a) configuration 1 and (b) configuration 2 as functions
of Fermi level. The Fano resonances are marked with arrows. The parameters taken are ε1σ =
ε2σ = 0, U1 = U2 = 4, tc = 0.1 and kBT = 0.01. For configuration 1, 	L

1 = 	R
2 = 0.15,

	R
1 = 	L

2 = 0.05; and for configuration 2, 	L
1 = 	R

1 = 0.15, and 	L
2 = 	R

2 = 0.05.

figure 2(a), the band widths respond to magnetic flux φ according to the following rule: the
broadening of the bonding band is always accompanied by shrinking the antibonding band, and
similarly for their Coulomb counterparts, though the line shape is somewhat different. It should
be noted from the figure that, unlike the no-U case [17–20], where the sum of the widths of
the bonding and antibonding bands is invariant because the self-energy is solely determined
by the DQD–lead coupling, with the on-dot U taken into consideration an additional self-
energy due to the Coulomb repulsion plays a role, then the total band width in general depends
on the magnetic flux φ to some extent. When Fermi level varies, the occupation number
of electrons in the DQD region is changed correspondingly. As shown in figure 2(b), the
integer number of electrons confined to the DQD region occurs approximately at the following
energies: ε0 − tc, ε0 + tc, ε0 + U − tc, ε0 + U + tc [41].

3.2. Fano effect in separated bands

Now let us consider the case in which the bonding as well as antibonding bands are well
separated from their Coulomb counterparts in the situation of U  tc and �ε ≈ 0.

Figure 3 shows the differential conductance (defined as ∂ J/∂V |V →0) as functions of the
Fermi level, or equivalently the average of two dot levels. The peaks marked with arrows in
the conductance spectra in two configurations represent the Fano-type peaks associated with
the asymmetric line shape, compared with the symmetric Lorentzian at the same spectra. As
shown in the figures and discussed in [21], the spectra vary with the magnetic flux. There are
only two Lorentzian and two Fano peaks in the conductance spectra for φ = 0 or 2π , while
four Lorentzian peaks appear when φ = π . The spectrum for φ = 2π has a mirror symmetry
with that for φ = 0.

In general, the bonding and antibonding states couple to lead states with different strengths,
leading to different broadenings. If the band width of the strongly coupled level covers the
weakly coupled band and the phase of states in the strongly coupled channel shifts little in
the close vicinity of the weakly coupled level, then the Fano interference will occur at this
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energy region. Here the weakly coupled channel acts as a Breit–Wigner scatterer in the resonant
tunnelling process, while the strongly coupled channel can be regarded as a nonresonant one.
It should be noted that in the present system the resonant or nonresonant channel is not fixed;
on the contrary, it could be any one of the four channels, as long as the magnetic flux as well as
the Fermi level fit it.

Notice also that when the dot–lead coupling strength is adjusted such that configuration 1 is
transformed into configuration 2, as shown in figure 3, the tail direction of the Fano peak in the
conductance spectra is flipped. The reason for this behaviour is that, compared to configuration
2, an extra flux of π threads into the loop in configuration 1 [21]. Thus, the Fano lineshape in
configuration 1 is just opposite to that in configuration 2, i.e. if two channels interfere with each
other constructively in configuration 1, then destructively in configuration 2, and vice versa.

3.3. Fano effect in hybridized bands

Interesting results appear when the separation between two dot levels, �ε, is comparable
with the on-dot U , so that the hybridization may occur between the antibonding band and
the Coulomb blockade counterpart of the bonding band.

Without the hybridization, the conductance peaks associated with the bonding and
antibonding bands are respectively located at ε0 ± √

(�ε)2/4 + t2
c . When �ε grows from

zero, there will be a red-shift for the bonding band peak and a blue-shift for the antibonding
band peak with respect to ε0. So the separation between the two peaks is proportional to√

(�ε)2 + 4t2
c . A similar trend has also been found for their Coulomb counterparts except for

a whole band shift by U . Thus, as shown in figure 4, when �ε increases, the antibonding
peak (the second peak) and the Coulomb counterpart of the bonding peak (the third peak)
in the conductance spectra will come closer. At certain values of �ε, the two bands begin to
overlap. Finally, the anticrossing region for these two peaks is reached at ε0+

√
(�ε)2/4 + t2

c ≈
U + ε0 − √

(�ε)2/4 + t2
c , or

√
(�ε)2 + 4t2

c ≈ U . If �ε  tc, the anticrossing region is just
around the Hubbard gap, �ε ≈ U . This is clearly depicted in three panels of figure 4 with
different U . It should be pointed out that, as highlighted by the dashed lines in figure 4, the
second and third peaks do anticross rather than cross each other around this transition region,
where the two bands hybrid and overlap. The anticrossing feature is also verified by careful
calculations with different parameters.

The hybridization between the second and third bands reshapes the conductance spectra.
Let us take a look at the variation of the line shape in configuration 2 by comparing two spectra
around the anticrossing region at U , i.e. figure 5 (�ε < U ) with figure 6 (�ε > U ).

We denote two peaks of the hybridized bands in the transition zone as peak 2′ and peak
3′, respectively. In figure 5, peak 2′, associated with the antibonding band, contains more
|QD1〉 component and less |QD2〉 component, while peak 3′ (the Coulomb counterpart of
bonding band) is related more to |QD2〉. In configuration 2, QD1 couples to leads more strongly
than QD2 does. Hence, with increasing �ε (but before the anticrossing minimum), the coupling
between peak 2′ and the leads becomes stronger and the band is broadened; on the other hand,
peak 3′, associated with a weakly coupled channel, is narrowed, even decoupled entirely from
the spectra at the anticrossing minimum. When the narrow weakly coupled channel 3′ is
entirely merged into the wider band 2′, a new Fano interference is expected to occur at the
energy of peak 3′. When �ε exceeds the anticrossing minimum, the main components of the
second and the third channel are exchanged; 3′ becomes the strongly coupled one gradually,
and distorts 2′ into the Fano peak (figure 6).

Besides, we notice that the broadening of 2′ (�ε < U) or 3′ (�ε > U) is always
accompanied by shrinking the first peaks (the furthest left white area in figure 4), which of
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Figure 4. The conductance spectra in configuration 2 as
functions of �ε and Fermi level for U = 1, tc = 0.1;
U = 2, tc = 0.2; and U = 3, tc = 0.3. The other parameters
are taken as ε0 = 0, 	L

1 = 	R
1 = 1, and 	L

2 = 	R
2 = 0.15.

Figure 5. The conductance spectra versus Fermi
level for �ε = 1.5, tc = 0.1, and U = 2. From top
to bottom, φ = 4nπ , (2n + 1)π , and (2n + 1)2π .
The other parameters taken for calculation are the
same as figure 4.

course turns out to be the Fano resonance. The reason for the shrinking of the first channel
is the reduced |QD1〉 component, quite similar to the mechanism for narrowing its Coulomb
counterpart. It has to be pointed out that the phenomenon above, though expected in terms of
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Figure 6. The conductance spectra versus Fermi level when �ε = 3, tc = 0.1, and U = 2. From
top to bottom, φ = 4nπ , (2n + 1)π , and (2n + 1)2π . The other parameters taken for calculation
are the same as figure 4.

the effective one-particle picture, can be well understood only invoking the Coulomb blockage
mechanism. All results above can be similarly found in configuration 1, which will not be
addressed repeatedly.

The interference between channels 2′ and 3′ responds to the magnetic flux φ in a period of
4π (figures 5 and 6). In particular, when an extra flux of π is added, the tail direction of the
Fano peaks at 1, 2′ or 3′ is flipped, quite similar to the �ε = 0 case in which configuration 1 is
tuned to configuration 2. The line shape at φ = (2n + 1)2π almost recovers that at φ = 4nπ

with slight variation in details. Compare with the �ε = 0 case, where the magnetic tuning leads
to the swap effect because of varying the effective broadening of two molecular states; here the
widths of 2′ and 3′ are robust to magnetic tuning and depend only on �ε, which resembles the
parallel DQD without the inter-dot coupling.

4. Discussion and conclusions

Considering the small level spacing in the GaAs quantum dots in experiments by Holleitner
et al, an electron may hop to the neighbour level before the above phenomena could be
probed. We suggest further experiments be carried out in quantum dots with smaller radius
R. For example, the typical experimental parameters are U ∼= 3.39 meV, �ε ∼= 0.114 meV,
corresponding to a quantum dot with R = 54 nm [12], and U = 2.95 meV, �ε = 0.308 meV
for a dot with R = 60 nm [16]. Assuming the GaAs quantum dot as a two-dimensional disc, U
is proportional to R−1 while �ε is proportional to R−2. Keeping shrinking the dot size, we will
eventually get �ε ∼ U . We estimate that to observe the expected Fano effect in hybridized
bands the radius of GaAs quantum dots should be around 2–6 nm, which is not an easy task
for the present experimental configurations, but in principle possible. Other single-electron
devices such as single-molecule transistors may also be chosen as candidates [31–34]. Being
of small size, for instance the diameter of the C60 molecule is about 0.7 nm, the level spacings
and charging energies in the systems are of the same order.

The conductance as a function of U in configuration 2 is shown in figure 7, in which four
peaks denoted by the bright lines are respectively centred at ε0−tc, ε0+tc+ 1

2 (U −√
U 2 + 4t2

c ),
ε0 − tc + 1

2 (U + √
U 2 + 4t2

c ), and ε0 + tc + U . As mentioned above, when taking the many-
body interaction into account, the resonant conductance peaks correspond to energy levels,
for which an extra electron (the total number of electrons is n + 1) is introduced to the
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Figure 7. The conductance spectra versus U in configuration 2. The parameters taken for
calculation are ε1σ = ε2σ = 0, tc = 1, U1 = U2 = U , 	L

1 = 	R
1 = 1, 	L

2 = 	R
2 = 0.15.

n-electron system, with the peak position centred at En+1 − En [35, 41]. Here, the ground-
state energy for n electrons in the isolated DCI, En (up to four in the present study), is
as follows: E1 = ε0 − tc, E2 = 2ε0 + 1

2 (U − √
U 2 + 4t2

c ), E3 = 3ε0 + U − tc, and
E4 = 4ε0 + 2U . The peak positions at the DOS and conductance spectra we obtained
comply with [41, 38–40], but disagree with results from the half-filling two-site Hubbard
model: 2ε0 + 1

2 (U − √
U 2 + 16t2

c ). The reason for the disagreement is simple, as the two-
particle ground state in the two-site Hubbard model, which is superposed of the singlets as
α(|↑〉1|↓〉2 −|↓〉1|↑〉2)+β(|↑↓〉1|0〉2 +|0〉1|↑↓〉2) [41, 42, 35], is forbidden by equation (11),
where the coefficients α and β are determined by the ratio tc/U . Therefore, the current
approximation is justified only when U is much larger than tc, which is exploited throughout the
paper. The solution to this problem probably lies in solving the isolated DQD Green function
g exactly, followed by including the self-energies due to leads by the Dyson equation, as has
been done by Bułka et al in a series-coupled DQD system [35]. This involves self-consistently
solving as many as 19 correlators, such as 〈n1σ n2σ̄ 〉, 〈d†

1σ d2σ d†
1σ̄ d2σ̄ 〉, 〈d†

1σ d2σ n1σ̄ n2σ̄ 〉, etc,
which is beyond the task of the present paper.

In summary, within the Keldysh nonequilibrium Green function formalism and the
equation of motion method, the transport through the parallel-coupled DQD system has been
studied with an emphasis put on the intra-dot Coulomb repulsion on the Fano interference.
By neglecting all spin-flip processes, two types of Fano interference are studied. When
two quantum dots are degenerate, main results obtained in the noninteracting model can be
reproduced for the Coulomb counterparts, such as flipping the direction of the asymmetric tail
of Fano peaks and the swapping effect between DQD bands. When separation between two QD
levels is large enough, the antibonding and the Coulomb blockade counterpart of the bonding
states are mixed up, which may result in two new channels. The interference between them
give rise to Fano resonances whose response to the external electrostatic and magnetic tuning
is quite different from the no-U one.
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[25] Zhang G M, Lü R, Liu Z R and Yu L 2005 Phys. Rev. B 72 073308
[26] Dong B, Djuric I, Cui H L and Lei X L 2004 J. Phys.: Condens. Matter 16 4303
[27] Chi F and Li S S 2005 J. Appl. Phys. 97 123704
[28] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[29] DiVincenzo D P 1996 Preprint cond-mat/9612126 ; also in Ref. [2]
[30] Clerk A A, Waintal X and Brouwer P W 2001 Phys. Rev. Lett. 86 4636
[31] Park H, Park J, Lim A, Anderson E, Alivisatos A and McEuen P 2000 Nature 407 57
[32] Park J, Pasupathy A N, Goldsmith J I, Chang C, Yaish Y, Petta J R, Rinkowski M, Sethna J P, Abruña H D,

McEuen P L and Ralph D C 2002 Nature 417 722
[33] Liang W, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725
[34] Yu L H and Natelson D 2004 Nano Lett. 4 79
[35] Bułka B R and Kostyrko T 2004 Phys. Rev. B 70 205333
[36] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[37] Haug H and Jauho A P 1996 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer)
[38] Pals P and Mackinnon A 1996 J. Phys.: Condens. Matter 8 5401
[39] You J Q and Zheng H Z 1999 Phys. Rev. B 60 13314
[40] Lamba S and Joshi S K 2000 Phys. Rev. B 62 1580
[41] Klimeck G, Chen G and Datta S 1994 Phys. Rev. B 50 2316
[42] Ziesche P, Gunnarsson O, John W and Beck H 1997 Phys. Rev. B 55 10270
[43] Borda L, Zaránd G, Hofstetter W, Halperin B I and von Delft J 2003 Phys. Rev. Lett. 90 026602
[44] Lopez R, Sánchez D, Lee M, Choi M-S, Simon P and Hur K L 2005 Phys. Rev. B 71 115312
[45] Sakano R and Kawakami N 2005 Phys. Rev. B 72 085303

http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRevB.62.2188
http://dx.doi.org/10.1103/PhysRevB.64.155311
http://dx.doi.org/10.1103/PhysRevLett.88.256806
http://dx.doi.org/10.1103/PhysRevB.68.235304
http://dx.doi.org/10.1103/PhysRevLett.93.106803
http://dx.doi.org/10.1103/PhysRev.76.308
http://dx.doi.org/10.1103/PhysRev.137.A1364
http://dx.doi.org/10.1103/PhysRevB.8.4734
http://dx.doi.org/10.1038/37562
http://dx.doi.org/10.1103/PhysRevLett.87.256802
http://dx.doi.org/10.1126/science.1071215
http://dx.doi.org/10.1063/1.1563731
http://dx.doi.org/10.1016/S1386-9477(02)00591-X
http://dx.doi.org/10.1103/PhysRevLett.92.176801
http://dx.doi.org/10.1103/PhysRevB.67.195335
http://dx.doi.org/10.1088/0953-8984/16/1/011
http://dx.doi.org/10.1088/0953-8984/16/12/014
http://dx.doi.org/10.1103/PhysRevB.70.233315
http://dx.doi.org/10.1103/PhysRevB.71.235320
http://dx.doi.org/10.1103/PhysRevB.71.205313
http://dx.doi.org/10.1103/PhysRevB.72.085304
http://arxiv.org/abs/cond-mat/0510253
http://dx.doi.org/10.1103/PhysRevB.72.073308
http://dx.doi.org/10.1088/0953-8984/16/24/012
http://dx.doi.org/10.1063/1.1939065
http://dx.doi.org/10.1103/PhysRevA.57.120
http://arxiv.org/abs/cond-mat/9612126
http://dx.doi.org/10.1103/PhysRevLett.86.4636
http://dx.doi.org/10.1038/35024031
http://dx.doi.org/10.1038/nature00791
http://dx.doi.org/10.1038/nature00790
http://dx.doi.org/10.1021/nl034893f
http://dx.doi.org/10.1103/PhysRevB.70.205333
http://dx.doi.org/10.1103/PhysRevLett.68.2512
http://dx.doi.org/10.1088/0953-8984/8/29/015
http://dx.doi.org/10.1103/PhysRevB.60.13314
http://dx.doi.org/10.1103/PhysRevB.62.1580
http://dx.doi.org/10.1103/PhysRevB.50.2316
http://dx.doi.org/10.1103/PhysRevB.55.10270
http://dx.doi.org/10.1103/PhysRevLett.90.026602
http://dx.doi.org/10.1103/PhysRevB.71.115312
http://dx.doi.org/10.1103/PhysRevB.72.085303

	1. Introduction
	2. Physical model and current formula
	3. Numerical results
	3.1. Spectra in dominant U
	3.2. Fano effect in separated bands
	3.3. Fano effect in hybridized bands

	4. Discussion and conclusions
	Acknowledgments
	References

